Fingerprint Classification Combining Curvelet Transform and Gray-Level Cooccurrence Matrix
نویسندگان
چکیده
منابع مشابه
Fingerprint Image Denoising Using Curvelet Transform
Curvelet transform is the new member of the evolving family of multiscale geometric transforms. It offers an effective solution to the problems associated with image denoising using wavelets. Finger prints possess the unique properties of distinctiveness and persistence. However, their image contrast is poor due to mixing of complex type of noise. In this paper an attempt has been made to prese...
متن کاملTexture Classification using Curvelet Transform
Texture classification has played an important role in many real life applications. Now, classification based on wavelet transform is being very popular. Wavelets are very effective in representing objects with isolated point singularities, but failed to represent line singularities. Recently, ridgelet transform which deal effectively with line singularities in 2-D is introduced. But images oft...
متن کاملTexture Classification Using Curvelet Transform
Abstrat-Brain tumors are due to abnormal growths of tissue in the brain. The most common group is gliomas, followed by meningiomas. Magnetic resonance imaging (MRI) is currently an indispensable diagnostic imaging technique for the early detection of any abnormal changes in tissues and organs. It possesses fairly good contrast resolution for different tissues. It is therefore widely used to pro...
متن کاملA New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix
In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for cla...
متن کاملGray and color image contrast enhancement by the curvelet transform
We present in this paper a new method for contrast enhancement based on the curvelet transform. The curvelet transform represents edges better than wavelets, and is therefore well-suited for multiscale edge enhancement. We compare this approach with enhancement based on the wavelet transform, and the Multiscale Retinex. In a range of examples, we use edge detection and segmentation, among other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/592928